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Exact Solution for the Diffusion in Bistable Potentials 
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We solve analytically the Fokker-Planck equation for a one-parameter family of 
symmetric, attractive, nonharmonic potentials which include double-well situa- 
tions. The exact knowledge of the eigenfunctions and eigenvalues allows us to 
fully discuss the transient behavior of the probability density. In particular, for 
the bistable potentials, we can give analytical expressions for the probability 
current over the working barrier and for the onset time which characterizes the 
transition from uni- to bimodal probability densities. 

KEY WORDS: bistable potentials, Fokker-Planck equation, exactly 
solved models. 

1. INTRODUCTION 

Owing to its wealth of applications, the 1D diffusion problem in non- 
harmonic potentials and more particularly bistable potentials remains the 
subject of many recent studies. The intrinsic nonlinearity present in this 
problem stimulates research both in the development of approximation 
schemes (1-3) and in the discussion of exactly soluble models. (4-11) This 
paper is devoted to the last approach, and we suggest a class of models for 
which the Fokker-Planck equation (F.P.E.) admits exact solutions. The 
potential Ua(Z ) from which the drift of the F.P.E. derives depends on a 
parameter a which, chosen at different values, leads to single- or double- 
well situations. For the class of models studied here the spectrum and the 

1 Center for Studies in Statistical Mechanics, University of Texas, Austin, Texas 78712. 
2On leave from the Department of Theoretical Physics, Universit~ de Gen~ve, CH-1211, 

Gen~ve 4, Switzerland. 
3 Supported by the Swiss National Fund for Scientific Research. 
4 On leave from the Institute of Theoretical Physics, Academia Sinica, Beijing, China. 
5 Supported in part by the Robert A. Welch Foundation. 

317 
0022-4715/82/1000-0317503.00/0 �9 1982 Plenum Publishing Corporation 



318 Hongler and Zheng 

eigenfunctions are exactly known. Moreover, the potential Ua(Z ) and the 
effective potential Va(Z) = - (1/4)[ U'(Z)] 2 + (1/2) U~'(Z) are both differ- 
entiable (by opposition to the piecewise potential models). For special 
values of the parameter a, the diffusion process reduces to already known 
cases such as the Ornstein-Uhlenbeck process Oz) or the Wong process. (v) 
For infinite probability densities delta-peaked on the axis of symmetry of 
U~(Z), the solution of the F.P.E. can be represented in a compact form 
already discussed in Ref. 16. This compact form permits us to calculate the 
branching time t C which, for double-well potentials, characterizes the transi- 
tion from a uni- to bimodal probability density. For very shallow wells, we 
find that tc depends logarithmically on the bifurcation parameter a which 
controls the shape of U~(Z). Finally, we calculate the probability current 
over the working barrier, which is a crucial physical quantity in the 
double-well problem. 

Our paper is organized as follows. In Section 2 we propose the model 
and construct the exact solution of the F.P.E. Section 3 is concerned with 
the discussion of a few special situations for which the probability density 
takes more compact forms. Finally, in Section 4 we calculate the branching 
time t c and the probability current over the working barrier. 

2. THE MODEL AND ITS SOLUTION 

The diffusion problem we are able to solve reads 

o e ( z ,  tl Zo,O) 
_ a ([ d ] ~ P(Z, IIZ o 0)) 3t OZ 2-2 Ua(Z) e ( z ' t l z ~ 1 7 6  ' ' 

Z ~ R , t ~  + (1) 

with 

and 

Ua(Z) = 21n( yl(a,Z) ) 

[ (~ = 2in e-Z2/41F1 -~ + 

a/> - 1 / 2  

1 1 Z2~] 
(Xa) 

4 ' 2 ' 2  ]] 
(lb) 

P(Z,t = 01Z0,0 ) = 8 ( Z -  Z0) (lc) 

The function yl(a, Z) is, for a >/ - 1/2, a positive definite solution of the 
Weber equation (13) : 

d 2 
dz2 Yl(a,Z) = (--~- + a)y,(a,Z ) (2) 
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Shape of U(x) for (a) a = -1/2, (b) a = -0.3, (c) a = 1/2, (d) a = 5/2. 

and the ] F l ( a / 2 +  1/4, 1 / 2 , Z 2 / 2 )  stands for a Kummer 's  function. (13) 
The potential Ua(Z ) may exhibit the following behaviors (14) (Fig. l): 

Z 2 
(i) Ua(Z)  = 4 

(ii) U~(Z) is an attractive double well 

(iii) U~(Z) is an attractive single well 

when a = - 1/2 

when a ~ ] - 1/2, 0[ 

when a > 0 

(3) 

To solve Eq. (1), we shall follow van Kampen's  procedure, (4) and we 
first introduce the effective potential V . ( Z )  (Fig. 2): 

1 [  d ]2 1 d 2 Ua(Z ) (4) 
v~(z) = -g -22 G(z) 2 d Z  ~ 

which, according to (la), takes the form 

Z 2 
V , ( Z )  = - ~ - a  + 2q~Z(z) (5) 

with 

q>(Z) = ~ Z  ln (y l ( a '  Z ) )  (6) 

The Schr6dinger equation (S.E.) associated with our diffusion problem 
(1) then reads (41 

d 2 
d z  2 + ( z )  + [F~ - v ( z ) ] ~ ( z )  = 0 (7) 
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where ~ ( Z )  is an eigenfunction of P(Z,t]Zo, O)[P(Z, OO [Z0,0)] -I/2, To 
solve the (S.E.) (7), we introduce the transformation ~ defined by (19) 

= x(Z)  = [ y , ( a , Z ) ] - '  d (y,(a,Z)~(Z)) ( 8 )  

a n d  t h e r e f o r e  

~-l~p(Z)=[yl(a,Z)]-tfyl(a,Z)~(Z)dZ (9)  6 

6 To guarantee that 6/lf-t~2ffffZ)= ~b(Z), the constant of integration K, up to which the 
primitive function in (9) is defined, has to be chosen K = 0. 
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From Eqs. (8) and (2), we obtain 

d -~  x(Z) = x(Z)~(Z) - E~(Z) (10) 

d 2 

= -~-  + a -  E x ( Z )  (11) 

Imposing natural boundary conditions for ~b(Z) in Eq. (7), the eigenfunc- 
tions of the Schr6dinger problem (11) are 

Xn(Z)=exp(-  Z21Hn[ Z-~- ) (12) 

and the spectrum reads 

E,= n + a + l/2 (13) 

According to Eqs. (12) and (13), the solution of the diffusion problem (1) 
can be written in the form (a) 

P(Z, tl Zo,O) = Nl l[  yl(a,Z) ] -2 

+ Yl(o'Z~ Z) n=0 ~ e x p ( -  ( n ,  +a+ 1 )t}%(Z)%(Zo) 

(14) 

where 

and 

~ ( z )  = C~y- :x (Z)  

= Cn[/l(a,Z)]-'fXn(Z)yl(a,Z)dZ 

~F] 4 2 ' 2 '  
z2 Z )dz (15) 

f ~n(Z)~Pm(Z) dZ= ~mn (16) 

The normalization constant N occurring in Eq. (14) is calculated in Refs. 15 
and 19, and reads 

The normalization coefficients C n are calculated in Ref. 19. 
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3. SOME SPECIAL CASES 

In this section, we shall consider special cases for which the expansion 
(14) can be summed up. 

Case (i): First, we consider the case for which Z o = 0. In this case Eq. 
(14) reduces to the form 

where 

0 G(Z,t)]yl(a,Z)dZ (28) 

C~e- ZV4H,~+ ,( Z I ~/'2 ) 
% ( Z )  = (20) 

(n + 

and (16) gives (13) 

e-z2/2[Wn+l(Z/~/-2)]2dZ= Cn -2- 2n~'~H! (21) 
fR 2(n + 1) 2 n + 1 

Using (20) and (21), we have 

P(Z, tiZo,O)= e-Z2 1+~-~, (n 1)l H"+I Hn+l (22) + 

which, by means of the Mehler's formula, (7> can be written in the form 

P(Z't]Zo'O)=[2~r(1-e-2t)] -'/2exp ~ _--~'-~t) (23) 

G(Z,t) = N(t)exp( - �89 2) (18a) 

a (t) = �89 coth t (18b) 

N(t) = ~r-1/2exp(-at)[a(t) ]-l[sinht]-3/2 (18c) 

By direct substitution, it is easy to verify that Eq. (18) is a solution of 
Eq. (1). 

Let us now discuss a few special values of the parameter a. 
Case (ii): 

a = 1 /2~y l ( l /2 ,Z  ) = exp{Z2/4) (19) 

From Eq. (15), the eigenfunctions take the form 



Exact Solution for the Diffusion in Bistable Potentials 323 

Case (iii): a = 2n + 1/2, n E N - {0), Z 0 = 0. In this case, the Weber 
function assumes a simpler form, namely,(13) 

iZ yl(2n + 1/2, Z)=(-1)n~eZ2/4H2n(-~) (24) 

In particular, for n = 1, Eq. (24) gives 

Z 2 Us/z(Z ) = ~ + ln(1 + Z 2) (25) 

The potential (25) leads to a drift which, besides its linear part, presents a 
saturation term of a similar form as the one occurring in the problems of 
lasers with saturable absorbers. (17) For Z 0 = 0, Eqs. (24) and (18) give 

p(z,t,O,O) = e-3/2t I Z2 ] 
(2~rsinht) 1/z'exp 2(1 - - e  -2t) (1 + Z2) -1 

e - t/2(sinh t) 1/2 exp - 2t) (26) 

+ 2 N ( 1  + z 2 )  2 2(1 --~ 
From Eq. (26), we can calculate the variance (Z2(t)). We obtain (~3) 

( Z 2 ( t ) )  = fRZ2P(Z, t] O, O) dZ 

8 (sinh/') 1/2 ' ' 

+ 4e-,/2(sinht)]/2U( 3,-2 

where U(a,b,Z) is a combination of Kummer's functions. (13) For t<< 1, 
Eq. (27) can be expanded by use of the asymptotic expansions. We have (13) 

U(a,b,Z)= Z - a [ 1  + o ( I z l - 1 ) ] ,  a Z ~  

and therefore 

t t 2 t (28) 

Case (iv): a o m .  To discuss this limiting case, let us introduce the 
change of variables: 

x -  Z a -  B (29) 
(2~/-~-) 1/2'  2 ~ -  

With Eq. 29, Eq. (2) reads 

d 2 B ,(2,/~-) ' /2x = (Ax2+  B)y 1 ,(2v~--) x (30) 
ax2 Y' 
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Hence, in the limit A ~ 0, we have 

lim yl[  B ] 
A-~o L 2-J  '(2~)1/2x ~ cosh(~/B X) (31) 

and therefore U~(x) = 2 ln (cosh (~  x)). 
It is interesting to note that this case has been studied in Ref. 7. 

Indeed, Wong considered the F.P.E.(7) : 

0 e(y,t lyo,O) = (2K- 1)~ [ye(y,t lyo,O)] 

02 
+ [(1 +y2)p(y,t]yo,O)] (32a) 

0y 2 

For K = 1 and in terms of the new variable x = sinh y, Eq. (32) takes the 
form 

O--P(x'tlx~ = -2  (tanhxP(x,t[x o, 0)) + ~x2e(x,t]xo,O) 

(32b) 

Equation (32b) is precisely the F.P.E. obtained with the force field derived 
from U~(x)=21n{cosh(v~x)). When Z0=0 ,  Eq. (18) can be easily 
identified as the Wong solution. (7) Indeed, using Eq. (31) and Eq. (18) we 
obtain for B = 1: 

e - t  1 (E+ (Z, 0 _ E_ (Z,O) e- z2/4tcosh Z d- -~ P(Z, t l Z0,0) - ( 4 ~ t ) 1 / 2  

where the error functions E_+ (Z, t) read 

E+(Z,t)=erf[ Z ++_~] 
- (4t)1/2 

(33) 

4. PROBABILITY CURRENT AND BRANCHING TIME 

The solution (14) permits immediately to calculate 
current at Z = 0. We have 

J (Zo,O = ~ e ( z , t  [~zZO,O) z=o 

(( 1)) = ~ (Cn)2exp -- n + a + g t /4.(O) 

Z~ 4 2 ' 2 ' 2 X dZ 

the probability 

(34) 
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For t >> 1, only the first eigenvalue (n = 0) contributes to Eq. (34), and we 
cab write 

(, a 3 I ( 't} J(Z~176 4 2 ' 2 '  2 exp - a + ~  t (35) 

Equation (35) clearly indicates that for a ~ - 1 / 2 ,  namely, for very deep 
wells, the transfer of probability from one well to the other is very slow, and 
we are in a situation of metastability. 

Finally in the double-well cases (a < 0), we can, for Z 0 = 0, calculate 
the branching time t c which characterizes the transition from a uni- to a 
bimodal probability density. According to the symmetry of the problem, t c 
is defined by the equation 

02 P(Z,  t = tc [0, 0) z=o= 0 (36) 
0Z 2 

Using Eq. (18), Eq. (36) takes the form 

82 G(Z, tc) - 2a f 0 OZ 2 _ - ~  G(Z, tc)yl(a,Z)dZ= 0 (37) 

By substitution of (la) into Eq. (18), we obtain 

N(t)a( t )  
e ( z ,  tlO, O) = 

[y l (a ,Z)]  2 

1 Z 2 a 

or equivalently 

e ( z ,  tlO, O ) = 

with 

1 1 Z 2 ) 
4 ' 2 '  2 dZ 

(38) 

(a/2  + 1 / 4 ) n  �9 Mn(Z,t  ) 
N(t )a( t )  L 1 /2 ] ,  

[ y l ( a, Z ) ] 2 n ~ O ( ]-~nI~ "~(tt i -~- 
(39) 7 

= f[a(t) + 1/2](Z2/2)e-'~6~ n dw M.(Z,  t) (39a) 

By integration, Eq. (39) gives 

U ( t ) a ( t ) e x p { - [ a ( t )  + 1/2](Z2/2)}  
e ( z ,  tio, o) = 

[y , (a ,Z)]2[a( t )  + 1/2]  

(a/2  + I /4) , (1)n 1 Z 2 

7 (OOn = F ( a  -I- n)/F(a) is a P o c h h a m m e r  c o e f f i c i e n t .  
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where 

c a l.(x) = K! 
K=O 

Using Eq. (40) and Eq. (37), we have 

(40a) 

-2a[a(tc) + 1/2]-'/22 F, 

a 1 1 

2 '  

 (tc) + 1/2 

Now, we introduce the linear transformation (13) 

(a,b )r(c)r(c-a-b)2F,[a,b l-Z] 
2F1 Z = ~--~(cZaV(- ~" b) 

c; L a + b - e +  l; 

_Z)c_a_bF(C)F(a + b -  c) + (1 

= 1 (41) 

c - a , c - b  1 X 2FI 1 - Z 
c+ l - a - b ;  

For very shallow wells (i.e., a ~ 0 -  ), t c >> 1. Hence, we obtain 

(42) 

3 F ( 5 / 4 )  _,} 
tc ~ 2 In 2~-F(7 /4 )  a (43) 

Equation (46) indicates that t c depends logarithmically on the bifurcation 
parameter a which controls the shape of the potential U,,(Z). This point 
has recently been discussed by Horsthemke.dS)A generalization to include 
asymmetric double-well situations is presently under study. 
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